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Executive Summary

In a computer-based testing (CBT) or computerized adaptive testing (CAT) environment, the process of
statistically calibrating the pool of test items may consist of the following two stages:

1. Pretesting stage. In this stage, subsets of items are administered to subsets of test takers in a series
of pretest sessions, and an item response theory (IRT) model is fitted to the response data to
obtain empirical estimates of such item properties as their difficulty, discriminating power, and
liability to guessing.

2. Online stage. In this stage, response data are gathered in an operational computerized testing
environment and used to estimate the values of the item parameters. An essential feature of
online calibration is that the data are gathered sequentially and the item parameter estimates are
improved in a gradual manner.

In a previous report by Glas, statistical tests for detecting unwanted differences between results from
pretesting and online calibration were studied. These tests were based on three classes of statistics: Lagrange
multiplier, Wald, and CUSUM statistics. For each statistic the standard errors of the parameter estimates have
to be approximated. In the previous report, these standard errors were computed for the 2-parameter logistic
(2-PL) and 3-parameter logistic (3-PL) models with fixed values for the guessing parameter and an
approximate Fisher information matrix. However, when the number of items in the item bank becomes large,
inversion of information matrices becomes a very time-demanding operation. Therefore, in the present report,
the use of a block-diagonal approximation to the Fisher information matrix is investigated.

In the 2-PL model and the 3-PL model with fixed guessing parameter, every item is characterized by two
unknown parameters: the discrimination and the difficulty parameter. In the diagonal approach, item
information is approximated by a two-by-two matrix with diagonal entries for information on both item
parameters and off-diagonal entries to account for the common part in their information. Information across
items is not taken into account. Using simulation studies, it was shown that the asymptotic standard errors
are underestimated by the block-diagonal approach but that the magnitude of the bias in the standard errors
was relatively small. Further, it was shown that the power of the statistical test based on a CUSUM statistic
using these approximated standard errors is well under control.

When employing the CUSUM test in practice, it is suggested that the CUSUM statistic be tuned to the
application by running a simulation study with a test administration design and item parameter values
similar to those in the real application. The results of the simulation study can then be used to determine
how underestimated standard errors can be translated into threshold values for the CUSUM statistic that
guarantee a test with acceptable power.

Abstract

In a previous report it was investigated how to evaluate whether adaptive testing data used for online
calibration sufficiently fit the item response model used by Glas. Three approaches were suggested, based on
a Lagrange multiplier (LM) statistic, a Wald statistic, and a cumulative sum (CUSUM) statistic, respectively.
For all these methods, the asymptotic variance of the parameter estimates has to be approximated. In the
previous report, standard errors were computed using an approximate observed Fisher information matrix.
However, when the number of items in the item bank becomes very large, manipulating complete
information matrices becomes quite difficult. Therefore, in the present report it is investigated to what extent
standard errors can be computed using the diagonal of information matrices only, and how the CUSUM
procedure must be tuned to this alternative approach.

Introduction

In a computer-based testing (CBT) or computerized adaptive testing (CAT) environment, the calibration
process may consist of two stages:

(1) The Pretesting stage. In this stage, subsets of items are administered to subsets of respondents in a
series of pretest sessions, and an item response model is fitted to the data to obtain item parameter estimates
to support computerized test administration.

(2) The online stage. In this stage, data are gathered in a computerized assessment environment and
incoming data are used for further parameter estimation.
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Evaluating differences in model fit of data emanating from the pretesting and online stage can be done
using Lagrange multiplier (LM) statistics, Wald statistics, and CUSUM statistics (Glas, 1998c). For all these
approaches, the asymptotic variance of the parameter estimates has to be approximated. In a previous
report, standard errors were computed using an approximate observed Fisher information matrix. However,
when the number of items in the item bank becomes very large, inversion of information matrices becomes
quite difficult. Therefore, in the present report it is investigated to what extent standard errors can be
computed using the diagonal of information matrices only.

This paper is organized as follows: In the section that follows, the principle of the CUSUM statistic will
be sketched. Next, methods for computation of standard errors will be discussed and these methods will be
evaluated using a number of simulation studies. The power of the CUSUM statistic using a diagonal
approximation to the observed information matrix will then be studied using artificial data. Finally, some
conclusions and suggestions for further research will be formulated.

The CUSUM Statistic

In this report, the 3-parameter logistic (3-PL) model will be used for describing response behavior. The
motivation is that CAT usually employs dichotomously scored selected response items. A problem is that
guessing may be prominent in the calibration phase, while it may occur less frequently in the online phase,
because here the items are tailored to the ability level of the respondents. Consequently, estimation of the
guessing parameter in the online phase may be very difficult. Therefore, in the present paper it will be assumed
that the guessing parameter is fixed to some plausible constant, say, to the opposite of the number of response
alternatives available.

So, consider dichotomous items where responses of persons labeled n to items labeled i are coded x,, = 0,
and xi = 1. The probability of a correct response is given by

$;(e ) = pr(x, = le

= Y + (1 )1V; (0 )

exp(a,0 R )
= y + (1 y

i )
1+ exp(a,0 13, )

(1)

where 0 is the ability parameter of person n and as, pi and y are the discrimination, difficulty, and
guessing parameter of item i, respectively. The CUSUM chart is an instrument of statistical quality control
used for detecting small changes in product features during the production process.

The CUSUM chart is used in a sequential statistical test, where the null-hypothesis of no change is never
accepted (Veerkamp, 1996). In the present case, the procedure starts with parameter estimates ai, and (3,,
obtained in the pretest phase. Then, for new batches of respondents g = 1, ..., G partaking in the tailored test
phase, the alternative hypothesis entails that the item is becoming more easy and is losing its discriminating
power. So the null-hypothesis is cc

ig a ;0 0 and 13 Rio 0, for g = 1, ..., G. A cumulative sum chart will be
based on the quantity

where

and

ai. aig io
{

P Pi
}S i(g)= max Si(g-1)+

Se(a,s a,)+
k, 0

Se(13, 1is laic, ais)

Se(ais a,)=csa

Se(Rio 13i 1a;° -aig) = 1'213 c?a,
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with

52,a2oand aa,o

the appropriate elements of the covariance matrix of the parameter estimates. Further, k is a reference value.
The CUSUM chart starts with Si(0) = 0 and the null-hypothesis is rejected as soon as 5,(j) > h, where h is some
constant threshold value. The choice of the constants k and h determines the power of the procedure. In the
case of the Rasch model, where the null-hypothesis is I3,g 0, and the term involving the discrimination
indices is lacking from Equation 2, Veerkamp (1996) successfully uses k = 1/2 and h = 5. This choice was
motivated by the consideration that this setup has good power against the alternative hypothesis of a
normalized shift in item difficulty of approximately one standard deviation. In the present case one extra
normalized decision variable is employed, that is, the variable involving the discrimination indices. To have
power against a shift of one standard deviation of both normalized decision variables in the direction of the
alternative hypothesis, a value k = 1 will be used below. The value h = 5 will not be changed.

Computation of Standard Errors

Let the item administration variable d,,; take the value one if the item was administered to n and zero if
this was not the case. If d,,; = 0 it will be assumed that xn; = c, where c is some arbitrary constant. Let xr, and d
be the response pattern and the item administration vector of respondent, respectively. In this report, the
framework of marginal maximum likelihood (MML) will be adopted. So, it will be assumed that ability is
normally distributed. Let g(.; .t, a) be the density of 0,7. Further, t is a vector of all parameters in the model,
that is, t' = (a' , 13' , y' , a). The log-likelihood to be maximized can be written as

In /( ; X, D) = In p( x I d ;4)

= ln p(x I d , 0 , a, 13, y)g(8 I (N)ae , (3)

where X stands for the data matrix and D stands for the design matrix.
The asymptotic covariance matrix of the parameter estimates can be computed by inverting the so-called

observed Fisher information matrix (see Efron & Hinkley, 1978):

, in 44; X, D)
F1(4,4) .

Using an identity by Louis (1982, also see, Glas, 1992, 1998a, 1998b, 1998c), the observed Fisher
information matrix can be written as a sum over respondents of terms

with

H (4, = 41 t) I x d Cool (01)(0 I x , d, 4),

B
a2 in p(x,0 Id;0

cogb (0b )= 41 ) ()b x , d, + h )h ,

a
hno= at-.111 p(x Ic1;4)= E(b (E,) I x d t)
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and

ab = ln p(x , 0 d ; .

For the 3-PL the exact expressions for the second order derivatives may become rather complicated.
Therefore, one may use the approximation

H(t, 4) (0h

(also, see Mislevy, 1986). This approximation is based on the following argument. To keep the argument
simple, the design vector is temporarily discarded. Let {x} be the set of all possible response patterns.
Differentiating both sides of the equation

y, p(x, e;4) ao=i
Ix)

twice with respect to i results in the well known identity

.32 in p(x, e;0 la In p(x, 0;0 lla p(x, 0;0}Az, e, Oa°. I, x, 0, pcil
{x) 34'

which can also be written as

In p(x, 0;) , a In p(x, 0;) Ha In p(x, 0;0
J p(0 I x; p(x; /ix} x;030 P(x; 4)

(6)

Replacing the sum over the distribution of {x} by a sum over observed response patterns results

,E(B 0 I x , d , ()b () lx,d, J,

and Equation 4 can be approximated by Equation 6.

A Simulated Comparison of Approximations of Standard Errors

Various approximations to the standard errors were completed in three simulation studies, concerning the
1-, 2- and 3-PL model, respectively. For all studies, data were simulated using a complete design where all
simulated test takers responded to all items. Since this section does not represent an adaptive testing situation,
adaptive testing will be invoked in the next section. The first simulation study concerned approximations to
standard errors for the 1-PL model. For sample sizes of 250, 1,000, and 4,000 simulated test takers, data were
generated for test models consisting of 5, 10, 20, and 40 items. Data were generated using the 1-, 2- and 3-PL
models. The item parameters are given in Table 1. The second and third column pertain to studies with 5 items,
the fourth and fifth column pertain to studies with 10 items, and the last two columns pertain to studies with
20 items. In 40-item-studies, the parameter vector of the 20-item-studies was duplicated. Table 1 gives the item
parameters for the 2-PL model; for the 1-PL model, all discrimination indices a were set equal to one, while the
item difficulties 13 were left unchanged; for the 3-PL model a and f3 were equal to ,the values of the 1 -PL model
and the guessing parameter y was equal to 0.20 for all items. Notice that for the 2-PL model, the item
parameters are chosen in such a way that items with relative extreme absolute difficulty have lower
discrimination indices. This was done to ensure the stability of the parameter estimates.
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TABLE 1
Item parameters for simulation studies

i a P a P a P
1 0.8 -0.8 0.7 -0.8 0.7 -0.9
2 0.9 -0.4 0.8 -0.6 0.8 -0.8
3 1.0 0.0 0.9 -0.4 0.9 -0.7
4 0.9 0.4 1.0 0.0 1.0 -0.6
5 0.8 0.8 1.2 0.0 1.1 -0.5
6 0.8 0.0 1.2 -0.4
7 1.0 0.4 1.3 -0.3
8 0.9 0.6 0.8 0.0
9 0.8 0.8 1.0 -0.1
10 0.7 1.0 1.0 0.0
11 1.0 0.1
12 1.0 0.0
13 0.8 0.3
14 1.3 0.4
15 1.2 0.5
16 1.1 0.6
17 1.0 0.7
18 0.9 0.8
19 0.8 0.9
20 0.7 1.0

Consider the overview of Table 2. In the first two columns of this table, labeled N and K, the sample sizes
and test lengths are given. For the time being, ignore the seven bottom lines of the table, they contain an
overview that will be returned to later. Since data were generated using the 1-, 2- and 3-PL, the third column,
labeled PL is related to the model used for data generation. Every line in the table contains the results of a
specific combination of sample size, test length, and data generation model. For each line, 10 replications
were made. Each replication consisted of generating a data set, estimating the parameters of the 1-PL model,
and computing various standard errors. These were computed as the inverse of the complete information
matrix defined by Equation 5, its diagonal, the approximate matrix defined by Equation 6, its diagonal, and

E(B (4, 4) x , d , 4). This last approximation is motivated by the fact that these second-order
derivatives are readily available since they are usually computed in the M-step of the EM-algorithm. It can
easily be verified that the off-diagonal entries of this matrix are all equal to zero, so this approach also results
in a diagonal approximation. Under the heading Diagonal Observed Info Matrix the mean over replications
and parameters of the standard error obtained using the diagonal of the observed information matrix
relative to the standard error obtained using the complete observed information matrix is displayed. The
entries under Ccomplete Approximate Matrix, Diagonal Approximate Matrix, and M-step Approximate
Matrix, are similar means obtained using the approximate information matrix defined by Equation 6, its
diagonal, and the matrix of second order derivatives of the M-step, respectively.

9
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TABLE 2
Approximation of standard errors for the 1 -PL model magnitude relative to standarderror, computed using complete
observed information matrix

N K PL

Diagonal
Observed

Info Matrix

Complete
Approximate

Matrix

Diagonal
Approximate

Matrix

M-Step
Approximate

Matrix
250 5 1 0.953 0.996 0.953 0.902

2 0.964 0.998 0.964 0.920
3 0.963 0.991 0.963 0.924

10 1 0.917 0.981 0.917 0.884
2 0.939 0.979 0.939 0.909
3 0.949 0.975 0.949 0.924

20 1 0.904 0.968 0.904 0.885
2 0.900 0.955 0.899 0.881
3 0.917 0.953 0.916 0.900

40 1 0.885 0.974 0.887 0.877
2 0.878 0.972 0.880 0.869
3 0.858 0.901 0.858 0.849

1,000 5 1 0.958 1.002 0.958 0.907
2 0.966 1.002 0.966 0.920
3 0.974 1.000 0.974 0.935

10 1 0.942 0.997 0.941 0.909
2 0.954 0.994 0.954 0.925
3 0.962 0.994 0.962 0.935

20 1 0.928 0.990 0.928 0.909
2 0.924 0.988 0.924 0.905
3 0.947 0.987 0.947 0.930

40 1 0.947 1.021 0.949 0.938
2 0.939 1.007 0.941 0.930
3 0.929 0.978 0.929 0.919

4,000 5 1 0.963 1.003 0.963 0.913
2 0.970 1.003 0.970 0.925
3 0.977 1.001 0.977 0.939

10 1 0.945 1.000 0.945 0.912
2 0.954 0.998 0.954 0.924
3 0.967 0.998 0.967 0.939

20 1 0.932 1.001 0.933 0.913
2 0.930 0.994 0.930 0.911
3 0.956 0.995 0.956 0.938

40 1 0.962 1.044 0.965 0.954
2 0.954 1.031 0.956 0.945
3 0.945 0.992 0.945 0.935

250 * * 0.919 0.970 0.919 0.894
1,000 * * 0.948 0.997 0.948 0.922
4,000 * * 0.955 1.005 0.955 0.929

5 * 0.965 1.000 0.965 0.921
10 * 0.948 0.991 0.948 0.918
20 * 0.926 0.981 0.926 0.908
40 * 0.922 0.991 0.923 0.913

It can be seen that Equations 5 and 6 produce comparable results. This is in accordance with previous
results (Glas, 1998b). Further, the diagonal approximations and the M-step approximation systematically
underestimate standard errors, and the last approximation is least precise. However, overall the bias is
relatively small. The seven last rows of the table give an indication of the main effect of sample size and test
length. For instance, the row with entry 250 under N and two stars under K and PL gives the results for
sample size 250 summed over all four test lengths and all three models. In the same manner, the last row
contains the results for test length 40 summed over all three sample sizes and all three models. It can be seen
that the precision of the diagonal approximations increases with sample size and decreases with test length.

In Table 3, the results for the standard errors of the 2-PL model are summarized. This table has a similar
format to the previous table-the columns labeled a contain the results for the discrimination parameters,
and the columns labeled 3 contain the results for the difficulty parameters. To account for the fact that in the
2-PL model every item is associated with two item parameters, the diagonal approachesare changed to
block-diagonal approaches, in the sense that item information is now approximated by a two-by-two matrix
with diagonal entries for information on both parameters and off-diagonal entries to account for the common
part in their information. Generally, the results displayed in Table 3 are in accordance with the results for the
1-PL displayed in Table 2: Equations 5 and 6 produce comparable results and the precision of the diagonal
approximations increases with sample size and decreases with test length. A difference is that the procedure
using the inverse of the second order derivatives of the M-step does a very poor job for a sample size of 250.

0
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TABLE 3
Approximation of standard errors for the 2-PL model magnitude relative to standard error, computed using complete
observed information matrix

Diagonal
Observed

Info Matrix

Complete
Approximate

Matrix

Diagonal
Approximate

Matrix
M-Step

Approximate Matrix
N K PL a P a R a R a R
250 5 1 0.921 0.905 0.936 0.955 0.903 0.902 0.553 0.915

2 0.908 0.912 0.929 0.944 0.891 0.908 0.528 0.921
3 0.897 0.911 0.934 0.937 0.886 0.909 0.539 0.907

10 1 0.929 0.881 0.944 0.961 0.922 0.878 0.632 0.893
2 0.941 0.901 0.966 0.956 0.948 0.901 0.654 0.908
3 0.919 0.896 0.969 0.946 0.933 0.898 0.658 0.897

20 1 0.885 0.853 0.904 0.953 0.879 0.853 0.592 0.859
2 0.887 0.850 0.910 0.943 0.885 0.850 0.653 0.854
3 0.867 0.844 0.934 0.963 0.885 0.848 0.615 0.842

40 1 0.769 0.794 0.809 1.031 0.767 0.794 0.534 0.800
2 0.779 0.793 0.817 0.975 0.776 0.794 0.605 0.799
3 0.748 0.780 0.773 0.819 0.759 0.784 0.549 0.780

1,000 5 1 0.938 0.912 0.961 0.961 0.940 0.912 0.987 0.959
2 0.932 0.923 0.957 0.960 0.930 0.923 0.976 0.967
3 0.914 0.902 0.994 0.943 0.956 0.907 0.975 0.962

10 1 0.960 0.912 0.970 0.977 0.961 0.912 0.759 0.928
2 0.967 0.928 0.976 0.975 0.969 0.929 0.850 0.944
3 0.952 0.924 0.968 0.970 0.956 0.924 0.853 0.948

20 1 0.946 0.899 0.968 0.984 0.950 0.899 0.762 0.913
2 0.948 0.898 0.967 0.987 0.950 0.900 0.856 0.914
3 0.936 0.901 0.970 0.984 0.945 0.904 0.761 0.912

40 1 0.921 0.910 0.945 1.029 0.921 0.911 0.719 0.922
2 0.923 0.913 0.945 1.015 0.926 0.915 0.842 0.928
3 0.907 0.893 1.143 1.283 0.912 0.894 0.693 0.899

4,000 5 1 0.942 0.922 0.957 0.964 0.940 0.922 0.985 0.964
2 0.941 0.932 0.962 0.963 0.942 0.932 0.982 0.972
3 0.939 0.897 1.090 0.954 1.049 0.907 0.991 0.947

10 1 0.965 0.917 0.973 0.982 0.966 0.917 0.997 0.948
2 0.971 0.931 0.975 0.979 0.971 0.931 0.998 0.956
3 0.958 0.933 0.966 0.971 0.960 0.933 0.997 0.970

20 1 0.961 0.911 0.976 0.998 0.960 0.911 0.986 0.935
2 0.965 0.914 0.977 0.994 0.963 0.914 0.987 0.935
3 0.951 0.906 1.000 1.001 0.969 0.910 0.983 0.937

40 1 0.958 0.936 0.972 1.039 0.955 0.936 0.980 0.958
2 0.961 0.939 0.975 1.031 0.958 0.939 0.980 0.958
3 0.947 0.923 1.190 1.216 0.964 0.928 0.976 0.951

250 * 0.871 0.860 0.902 0.948 0.870 0.860 0.593 0.865
1,000 * 0.937 0.910 0.980 1.006 0.943 0.911 0.836 0.933
4,000 '' 0.955 0.922 1.001 1.008 0.966 0.923 0.987 0.953
* 5 * 0.926 0.913 0.969 0.953 0.938 0.913 0.835 0.946
* 10 * 0.951 0.914 0.967 0.968 0.954 0.914 0.822 0.932
* 20 * 0.928 0.886 0.956 0.978 0.932 0.888 0.799 0.900
* 40 * 0.879 0.876 0.952 1.049 0.882 0.877 0.764 0.888

In Table 4, the results for the 3-PL model are given. In this case, item discrimination and difficulty
parameters were estimated keeping the guessing parameter constant at its true value of 0.20. Further, the
observed information matrix (Equation 5) was not computed because it was considered too complex.
Therefore, Table 4 contains results for the block-diagonal approximate matrix (Equation 6) and the
block-diagonal M-step matrix of second-order derivatives, both relative to the complete matrix defined by
Equation 6. Results are not much different from those of the two studies reported above.
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TABLE 4
Approximation of standard errors for the 3-PL model magnitude relative to standard error, computed using complete
observed information matrix

Diagonal
Approximate

Matrix
M-Step

Approximate Matrix
N K PL a R a P
250 5 1 0.911 0.894 0.968 0.950

2 0.903 0.908 0.954 0.959
3 0.864 0.873 1.129 1.075

10 1 0.927 0.874 0.969 0.913
2 0.942 0.905 0.969 0.932
3 0.907 0.888 0.964 0.945

20 1 0.886 0.856 0.912 0.882
2 0.889 0.857 0.912 0.878
3 0.851 0.835 0.914 0.897

40 1 0.771 0.795 0.794 0.819
2 0.780 0.793 0.801 0.815
3 0.760 0.771 0.804 0.816

1,000 5 1 0.938 0.912 0.987 0.959
2 0.932 0.923 0.976 0.967
3 0.882 0.893 0.963 0.974

10 1 0.960 0.912 0.991 0.942
2 0.967 0.931 0.992 0.955
3 0.930 0.905 0.991 0.964

20 1 0.947 0.901 0.972 0.925
2 0.949 0.903 0.973 0.925
3 0.926 0.896 0.978 0.947

40 .1 0.922 0.910 0.944 0.932
2 0.923 0.911 0.944 0.932
3 0.905 0.888 0.949 0.932

4,000 5 1 0.942 0.922 0.985 0.964
2 0.941 0.932 0.982 0.972
3 0.898 0.907 0.970 0.979

10 1 0.965 0.917 0.997 0.948
2 0.971 0.931 0.998 0.956
3 0.935 0.910 0.997 0.970

20 1 0.961 0.911 0.986 0.935
2 0.965 0.914 0.987 0.935
3 0.943 0.912 0.993 0.960

40 1 0.958 0.936 0.980 0.958
2 0.961 0.939 0.980 0.958
3 0.937 0.912 0.982 0.957

250 0.866 0.854 0.924 0.907
1,000 0.932 0.907 0.972 0.946
4,000 0.948 0.920 0.986 0.958
* 5 0.912 0.907 0.990 0.978
* 10 0.945 0.908 0.985 0.947
* 20 0.924 0.887 0.958 0.920
* 40 0.880 0.873 0.909 0.902

In general, all results give the impression that it must be possible to tune the CUSUM statistic using the
block-diagonal approximation in such a way that a test with reasonable power characteristics can be
obtained. The approach using the second order derivatives of the M-step is inferior to the other
approximations and will not be further pursued. The block-diagonal approaches based on Equations 5 and 6
produced nearly identical results. However, the latter is easiest to compute. Therefore, the power of a
CUSUM test based on this latter approach will be the topic of the next section.
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9

The Power of the CUSUM Statistic

In this section, a simulation study of the power of a test based on a CUSUM statistic where the standard
error is computed using the inverse of the block-diagonal of Equation 6 is presented. The model used was
the 3-PL model with a fixed guessing parameter of 0.20. The item bank consisted of 100 items, with
difficulties 13 equally spaced on the interval -1.00 to 1.00, and discrimination parameters a drawn from a
log-normal distribution with mean zero and standard deviation equal to 0.10. Ability parameters were
standard, normally distributed throughout the study. For the pretesting stage, four groups of 250 simulated
test takers each were generated. Each group responded to 50 items: the first group responded to the items 1
to 50, the second group to 26 to 75, the third group to 51 to 100 and the fourth group to the items 1 to 25 and
76 to 100. So in the pretest design every item was presented to 500 respondents. Next, four batches, g = 1, ...,
4, of 1,000 adaptive-testing simulated test takers were generated. Every simulated test taker responded to 20
items. Person parameters were estimated by their posterior expectation using a standard normal prior, and
item selection was by the maximum information criterium. Finally, CUSUM statistics S,(g), g = 1, ..., 4, were
computed where the standard errors were inflated by 1.1 to correct for the bias identified in the previous
section.

Consider the results displayed in Table 5. The first lines of the table relate to 10 replications without any
misfitting items. The entries in the row labeled "fit" contain the proportions of item statistics S1(g), g = 1, ..., 4,
with values lager than 2.5, 5.0, 7.5 and 10.0, respectively. So, for instance, the proportion of items with a
value S;(4) > 5.0 is equal to 0.04. The following rows contain the results of simulations where, in the online
stage model, violations were imposed on every 5th item, that is, on item 5, 10, 15, 20, 25, ..., and so forth. So
for every replication, 20 items were misfits while the remaining 80 items fitted the model. Again, 10
replications were made for every study. The model violations are listed in the rows labeled Model Violation.
The entries y + 0.05,1 + 0.10, and y + 0.20 refer to studies where, for the misfitting items, the guessing
parameter was augmented with 0.05, 0.10 and 0.20, respectively. The entries 0, - 0.20, 0, - 0.40, and 13, - 0.60
refer to studies where,.for the misfitting items, the difficulty parameter was lowered with 0.20, 0.40 and 0.60,
respectively. The rows labeled Misfit give the proportion of CUSUM statistics S,(g), g = 1, ..., 4, with values
lager than 2.5, 5.0, 7.5, and 10.0 for the misfitting items. The rows labeled Fit give similar proportions for the
fitting items. It can be seen that the proportions for the misfitting items are substantially larger than the
proportions for the fitting items, the latter proportions are generally comparable to the proportions in the
study without model violations. The study where misfitting items had their guessing parameter augmented
from 0.20 to 0.25 seems to be an exception: here the proportion of fitting items with S;(g) > 2.5 is equal to 0.21,
so in this case the probability of a Type I error seems to be quite high. But generally, the proportion of Type I
errors seems to be under control, while the proportion of misfitting items spotted is reasonable.
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11

Conclusion

In this study it was shown that standard errors can be reasonably approximated using a block-diagonal
approximation to the observed Fisher information matrix. Further, it was shown that the power of a test based on
a CUSUM statistic using this approximated standard error is well under control. Tuning the CUSUM statistic to a
specific application can be done by running a simulation study as in the previous section, with test
administration design features as they apply in this specific application, and evaluate how the underestimated
standard errors must be translated into values of k and h to obtain acceptable power characteristics.
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